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Statistical mechanics of monatomic liquids

Duane C. Wallace
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 28 March 1997!

Two key experimental properties of elemental liquids, together with an analysis of the condensed-system
potential-energy surface, lead us logically to the dynamical theory of monatomic liquids. Experimentally, the
ion motional specific heat is approximately 3Nk for N ions, implying the normal modes of motion are
approximately 3N independent harmonic oscillators. This implies the potential surface contains nearly har-
monic valleys. The equilibrium configuration at the bottom of each valley is a ‘‘structure.’’ Structures are
crystalline or amorphous, and amorphous structures can have a remnant of local crystal symmetry, or can be
random. The random structures are by far the most numerous, and hence dominate the statistical mechanics of
the liquid state, and their macroscopic properties are uniform over the structure class, for large-N systems. The
Hamiltonian for any structural valley is the static structure potential, a sum of harmonic normal modes, and an
anharmonic correction. Again from experiment, the constant-density entropy of melting contains a universal
disordering contribution ofNkD, suggesting the random structural valleys are of universal numberwN, where
lnw5D. Our experimental estimate forD is 0.80. In quasiharmonic approximation, the liquid theory for
entropy agrees with experiment, for all currently analyzable experimental data at elevated temperatures, to
within 1–2% of the total entropy. Further testable predictions of the theory are mentioned.
@S1063-651X~97!01810-2#

PACS number~s!: 65.50.1m, 64.10.1h, 05.70.Ce
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I. INTRODUCTION

More than 50 years ago, noting that fusion has only sm
effects on the volume, cohesive forces, and specific h
Frenkel@1# reached the conclusion that ‘‘the character of t
heat motion in liquid bodies, at least near the crystallizat
point, remains fundamentally the same as in solid bod
reducing mainly to small vibrations about certain equilibriu
positions.’’ Twenty years earlier still@2# he argued that thes
equilibrium positions are irregular in a liquid, just as in a
amorphous solid, but while the equilibrium positions are p
manent in a solid, they are not so in a liquid; rather ea
liquid atom oscillates for a time about the same equilibriu
position, then jumps to a new one. In the present work, Fr
kel’s qualitative picture will not be abandoned, but will on
be refined.

From computer simulations of the motion of atoms
small systems, containing 32 and 108 particles, Stillinger
Weber @3–6# isolated mechanically stable arrangements
the particles, called amorphous packings. They sugge
that the equilibrium properties of liquids result from vibr
tional excitations within, and shifting equilibrium betwee
these stable molecular packings. Again from computer sim
lations for 500 particle systems, LaViolette and Stump@7#
observed a wide variety of packing symmetry when the s
tem density was varied.

We have constructed an expansion of the liquid entrop
a multiparticle correlation series, and, using measured p
correlation functions, have shown that keeping only corre
tions up to two particles gives an excellent account of
experimental entropy for most liquid metals@8–10#, for liq-
uid argon@11#, and for the hard-sphere liquid@12#. For those
few liquids where theory and experiment do not agree at
pair-correlation level, the experimental entropy is alwa
561063-651X/97/56~4!/4179~8!/$10.00
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smaller than theory, suggesting the presence of higher-o
correlations in the liquid@9#.

In spite of the long history of insightful contributions t
the nature of the liquid state, we do not yet possess a the
for the motion of particles in a liquid. What is needed is
Hamiltonian which is approximately solvable for its ener
levels, a partition function which sums over those ene
levels, and a comparison of the statistical-mechanical f
energy with the experimental thermodynamic properties
liquids. This latter comparison will give some indication
the validity of the theory, and will point the way towar
theoretical improvements. This program will be carried o
in the present paper, for the case of monatomic liquids.

Experimental properties of elemental liquids give a fai
definite picture of the liquid state, as described in Sec.
With unwavering faith in this simple picture implied by ex
periment, we analyze the potential energy landscape, c
struct the Hamiltonian in Sec. III, and evaluate the partiti
function and free energy in Sec. IV. Our comparison w
experiment in Sec. V comprises two parts:~a! the relation to
the experiment of principal theoretical quantities whose t
oretical calculation is beyond the scope of this work, and~b!
a detailed comparison of theory and experiment for the
tropy of elemental liquids as function of temperature. Sect
VI presents a brief descriptive summary of the liquid theo
and some of its predictions, and a discussion of some te
nical points.

The liquid state of an element has the same theoret
description, whether the liquid evolves from the crystal
the normal melting process, or by anomalous melting. Ho
ever, since we are going to infer liquid properties from i
formation on the melting process, we have to keep in m
the existence of these two melting categories. Here is a b
summary of our findings on the melting of elements@13,14#.

~a! In normal melting there is no significant change in t
4179 © 1997 The American Physical Society
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4180 56DUANE C. WALLACE
electronic structure, as, for example, metal crystal to m
liquid. Experimental data for the entropy of melting at co
stant density lie in the narrow range (0.64– 0.97)Nk, and has
mean and variance given by (0.8060.10)Nk.

~b! In anomalous melting there is a significant change
the electronic structure, as for example polar crystal to m
liquid. The entropy of melting at constant density is mu
higher than the normal value, being (1.48– 3.85)Nk for the
six anomalous elements we have studied, and appare
contains the normal contribution, plus an amount due mo
to the increase in potential energy in going to the new e
tronic structure.

From these findings, we formulated the hypothesis t
the liquid contains a universal ion-motional disordering e
tropy of NkD, relative to the crystal, whereD50.80 @14#.

II. NATURE OF THE LIQUID STATE

The constant-volume specific heatCV is obtained by a
well-known thermodynamic correction@15# from the experi-
mental constant-pressure specific heatCP . We assume for
the liquid, just as for the crystal, thatCV is comprised of an
ion-motional contributionCI , and an electron excitation
contributionCE ,

CV5CI1CE . ~1!

To obtain accurate values ofCI , from the experimentalCV ,
we consider only the nearly-free-electron elements, wh
CE is quite small, and where in addition we can apply t
low-temperature expansion with confidence to crystal a
liquid alike:

CE5 1
3 p2Nk2Tn~«F!, ~2!

wheren(«F) is the electron density of states per atom at
Fermi energy«F . For all the elements for which we ar
currently able to evaluateCI accurately, for both crystal an
liquid at melt, the results are listed in Table I. Errors inCI of
60.05Nk are expected, with larger errors likely in sever
cases. Our data sources forCP are Hultgrenet al. @16# and
the JANAF ~Joint Army–Navy–Air Force! tables@17#, and
the electron density of states was obtained from ba

TABLE I. Ion motional specific heatCI
c for the crystal at melt,

andCI
l for the liquid at melt, for 19 elements.

Element CI
c/Nk CI

l /Nk Element CI
c/Nk CI

l /Nk

Li 3.25 ~3.21! Mg 3.20 3.02
Na 3.43 3.39 Zn 3.04 2.81
K 3.41 3.36 Cd 2.99 2.83
Rb 3.45 3.39 Ga 3.03 3.12
Cs 3.52 3.39 In 3.14 3.13
Al 3.06 2.99 Sn 3.31 3.17
Pb 2.93 3.05 Hg 3.11 3.04
Cu 3.20 2.90 Si 3.47 ~2.05!
Ag 2.95 3.01 Ar 2.88 2.33
Au 3.06 ~2.79!
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structure calculations where possible@18,19#, approximately
corrected for density changes, otherwise from free-elect
theory.

The data of Table I reveal the nearly universal prope
CI'3Nk for both crystal and liquid at melt. Since we kno
in general thatCI53Nk is a property of 3N independent
harmonic oscillators, and in particular that we have an exc
lent theory of ion motion in crystals in terms of 3N indepen-
dent harmonic oscillators@20,15#, we assume the ion motion
in elemental liquids can be resolved to good approximat
into 3N independent harmonic oscillators. Consistent w
this assumption, we picture the ions moving primarily with
one or more nearly harmonic valleys in the potential ene
surface.

For monatomic liquids, the general behavior ofCI is to
decrease as temperature increases at constant density, a
decrease as density decreases at constant temper
Though the density dependence can be complicated by
presence of phase transitions on an isotherm, the system
ways becomes a gas at sufficiently low density, and als
sufficiently high temperature@21#, andCI51.5Nk for a gas.
Grimvall @22# showed thatCI for liquid metals decreases a
temperature increases at atmospheric pressure, and thi
crease reflects both the increasing temperature and dec
ing density.

From the viewpoint of harmonic oscillators as liquid b
havior, let us examine some finer details of the data in Ta
I. For the alkali metals,CI is larger than 3.0Nk; in fact it is
around 3.4Nk for both crystal and liquid. We know this
larger value is due to anharmonicity in the crystal@23,24#,
and we believe it is due to the same kind of anharmonicity
the liquid as well. For Ar, the crystal shows ordinary beha
ior, with a little anharmonicity, but the liquid is far from
ordinary, with CI52.33Nk. This is because liquid Ar at 1
bar is greatly expanded from the crystal, is very wea
bound, and the ion motion takes on some of the gas cha
ter. We have previously noted this character of liquid arg
@13#, and found some evidence that sufficiently compres
Ar behaves like an ordinary liquid@11,25#. In Si, the large
anharmonicity of the crystal presumably results from t
strongly directional covalent bonds of the diamond structu
while the very low liquidCI52.05Nk reflects the quite ex-
traordinary nature of liquid Si. First, because of anomalo
melting, metallic liquid Si is at a temperature far above t
normal melting temperature of the metallic form@13#. Sec-
ond, while the number of neighbors in the first peak of t
pair-correlation function is around 9–11 for most liquid me
als@26#, for Si and Ge it is respectively 6.4 and 6.8@26#, and,
in this connection, Ashcroft@27# suggested the presence
dynamical clustering of the ions in liquid Ge. Finally, thoug
it is a small effect, the free-electron valueCE50.22Nk for Si
might be an overestimate. The remaining 12 elements
Table I show remarkably uniform behavior, withCI
5(2.9– 3.3)Nk for the crystals, andCI5(2.8– 3.2)Nk for
the liquids. Note that this group includes two more anom
lous melting elements, Sn and Ga, whose liquidCI values
are not at all unusual, perhaps because these two elem
are only weakly anomalous in their melting.

To complete the qualitative picture of the liquid state, o
more issue needs to be addressed. For harmonic oscilla
the specific heat is independent of the number of structur



s
e

ha
ib

e-
ur

e
tr
t o
r

a

ith
l-

ap
at

le
an
e
u

i

t

ey
ra
is
in
ca
ey
ti
he
us
,’
m
lu

e
le

re
t-

e
g

d

er
tion
-

o-

-
ruc-
im-
, at
lline

56 4181STATISTICAL MECHANICS OF MONATOMIC LIQUIDS
system possesses. On the other hand, the entropy mea
that number, for if a system haswN accessible structures, th
entropy contains the termNk lnv. Our hypothesis of a uni-
versal disordering entropyNkD of the liquid relative to the
crystal, mentioned in Sec. I, and noting that the crystal
only one structure, now suggests the number of access
structures in a monatomic liquid is the universal numberwN,
where lnw5D. We will now proceed to a mathematical d
scription, which makes more precise this qualitative pict
of the liquid state.

III. HAMILTONIAN

We consider a condensed-matter system ofN-like atoms
distributed more or less uniformly in a volumeV. Each atom
is separated into an ion core and valence electrons, wher
ion can be the bare nucleus, or can include some elec
shells, and for abbreviation we refer to the complete se
valence electrons simply as ‘‘the electrons.’’ The ions a
labeledK51, . . . ,N, have positionsrK , and the energy of
the system when the ions are held fixed and the electrons
in their ground state is the adiabatic potentialF($rK%). If
now the ions are allowed to move in this potential, w
momentapK , the motion is described by the ionic Hami
tonianHI ,

HI5(
K

pK
2

2M
1F~$rK%!, ~3!

whereM is the ion mass. When the Born-Oppenheimer
proximation holds, the electrons remain in their ground st
andHI is the complete system Hamiltonian@20#. In reality,
however, the motion of the ions causes excitation of the e
trons from their ground state, and this is especially import
for metals, where the electrons have excited states of v
low energy. The excitation of electrons, including its co
pling to the motion of the ions, will be represented byHE ,
so the total Hamiltonian is

H5HI1HE . ~4!

In this paper, we concentrate on the ionic motion, and w
not worry about the details ofHE , though we will have to
estimate its contribution to the total free energy, in order
compare the liquid theory with experiment.

The set $rK% spans the 3N-dimensional configuration
space, which contains a number of nearly harmonic vall
in the potential-energy surface. The equilibrium configu
tion at the bottom of each valley is a ‘‘structure.’’ A ridge
formed at the intersection of neighboring valleys, and a l
along the ridge top denotes the intervalley boundary. We
allow that all the valleys, plus a large number of intervall
boundaries, are accessible to the liquid state. The collec
of all accessible intervalley boundaries is called simply ‘‘t
boundary.’’ The entire collection of structural valleys, pl
the boundary, is denoted the ‘‘liquid configuration space
and contains all configurations important for the equilibriu
statistical mechanics of the liquid state. This latter conc
sion follows from the specific-heat analysis of Sec. II.

In perspective, the great majority of configuration spac
inaccessible to the liquid state. The main restriction, revea
ures
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in the pair correlation function@26#, is that the liquid is vir-
tually never found in a configuration in which two ions a
closer thanr c , wherer c is around 75% of the mean neares
neighbor separation.

The structures are labeledg, whereg51, . . . ,wN, andw
is to be determined. The positions of the ions in structurg
areRK(g). For a proposition limited to configurations lyin
within the valley of structureg, we use the terminology ‘‘in
g.’’ When the system is ing, the position of ionK is mea-
sured byuK(g), its displacement from equilibrium, where

uK~g!5rK2RK~g!. ~5!

Again when the system is ing, the adiabatic potential is
denotedFg , and is considered a functionFg($uK(g)%) of
the displacements. Then when the system is ing, the ionic
Hamiltonian isHg , given by

Hg5(
K

pK
2

2M
1Fg„$uK~g!%…. ~6!

It is useful to expandFg in powers of the displacements,

Fg5F0~g!1FH~g!1FA~g!. ~7!

HereF0(g) is the static structure potential,

F0~g!5Fg„$uK~g!50%…5F„$RK~g!%…. ~8!

The harmonic potentialFH(g) expresses terms of secon
order in displacements,

FH~g!5 1
2 (

KL
uK~g!•FKL~g!•uL~g!, ~9!

where the potential coefficientsFKL(g) are merely second
displacement derivatives ofFg , at equilibrium. The anhar-
monic potentialFA(g) is all terms higher than second ord
in displacements, and since we already know the ion mo
consists approximately of 3N independent harmonic oscilla
tors, thenFA(g) is a small contribution. NowHg can be
written so as to emphasize the importance of harmonic m
tion,

Hg5F0~g!1HH~g!1FA~g!, ~10!

where the important dynamic term isHH(g),

HH~g!5(
K

pK
2

2M
1FH~g!. ~11!

This is diagonalized in terms of 3N normal modes labeled
l51, . . . ,3N, with momentapl , coordinatesql(g), and
frequenciesvl(g), so thatHH(g) becomes

HH~g!5(
l

F pl
2

2M
1

1

2
Mvl

2~g!ql
2~g!G . ~12!

The HamiltonianHg applies to any structure in configu
ration space. Let us consider first the nature of various st
tures, and then the corresponding boundary conditions
posed on the Hamiltonian. For most elemental systems
any density in the condensed phase, there are crysta
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4182 56DUANE C. WALLACE
structures having long-range order, some of which lie at
lowest energies. Above these are an array of structures w
out long-range order and generally called amorphous. He
will be necessary to divide amorphous structures into t
classes.

~a! Structures with a remnant of crystal symmetry, at le
among nearest neighbors, which we call ‘‘symmetric’’ stru
tures. These range from the microcrystalline structures
served in computer simulations@3,4,7#, to the tetrahedrally
coordinated amorphous carbon made experimentally by
implantation@28#, and studied theoretically by local-densit
approximation techniques@29#. This class, though large in
number, is stillrelatively few, because of the symmetry re
striction. In addition, the structure potentialF0(g), and the
set of normal mode frequencies$vl(g)%, are sensitive to
near-neighbor symmetry, so these important quantities h
significant variations over the class of symmetric structur

~b! Structures with a wide distribution of nearest-neighb
orientations, where near-neighbor symmetry is frustra
@30#, as in the random close-packed hard-sphere mode
viewed by Finney@31#. We call these ‘‘random’’ structures
and the random character leads to two important proper
for large-N systems. First, they constitute the great major
of all structures, and hence dominate the statistical mech
ics of the liquid state. Second, each macroscopic struct
property is narrowly distributed over the class of structur
It follows that the structure potentialF0(g), and the set of
normal mode frequencies$vl(g)%, are essentially indepen
dent ofg for large-N random structures, and one can defi
the liquid structure potentialF0

l , and the liquid frequency
set$vl%, by

F0
l 5F0~g!, ~13!

$vl%5$vl~g!%, ~14!

whereg is a random structure in the thermodynamic limit
We now consider the boundary condition onHg , requir-

ing that the system is ing. In the theory of lattice dynamics
negligible error is introduced by extending the cryst
structure valley to infinity, thus eliminating the bounda
condition. The same procedure will constitute an accepta
approximation for the random structural valleys, but the er
in ignoring the intersections of neighboring valleys will n
be negligible in the liquid theory. The correction of this err
is called the ‘‘boundary’’ contribution, because it resu
from the presence of the intervalley boundaries.

Let us use the above arguments to write a simple appr
mation for Hg for random structures. We first neglect th
boundary condition, so the normal coordinatesql(g) are
given infinite extent. We then use Eqs.~13! and~14! to omit
g dependence ofF0(g) and\vl(g), and finally we neglect
anharmonicity, to write

Hg'F0
l 1(

l
F pl

2

2M
1

1

2
Mvl

2ql
2~g!G . ~15!

In this quasiharmonic approximation,Hg depends ong only
through the configuration-space location of structureg, and
the error is specifically the neglect of anharmonic and bou
e
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ary contributions. The latter can be expressed as a se
interactionsHgg8 , which cause transitions between valleysg
andg8.

IV. PARTITION FUNCTION

We first evaluate the canonical partition functionZI for
the ion motion alone, and since the motion of ions in prac
cally all monatomic liquids is classical, we use classical s
tistics. ZI is written

ZI5
1

h3NN! E •••E exp~2bHI !PKdpKdrK . ~16!

The configuration part of the integral includes all permu
tions of the ions over each configuration, so division byN!
cancels the sum of permutations.

Restricting the configuration integral to the liquid co
figuration space, the partition function becomes a sum o
the random structural valleys,

ZI5SgZg , ~17!

where

Zg5
1

h3N E •••E exp~2bHg!PKdpKduK~g!. ~18!

HereN! has been removed, because when the system isg,
each ionK is assigned an equilibrium positionRK(g), and
no permutations are allowed. We can use the quasiharm
approximation~15! for Hg , to find the equivalent approxi
mation forZg :

Zg'
exp~2bF0

l !

h3N PlE E expF2bS pl
2

2M
1

1

2
Mvl

2ql
2D G

3dpldql . ~19!

Evaluating the integral gives

Zg'exp~2bF0
l !Pl

kT

\vl
. ~20!

Now in Eq.~17! for ZI , theSg merely counts the number o
random structures, which iswN, so that

ZI'wN exp~2bF0
l !Pl

kT

\vl
. ~21!

The error in this result is the neglect of anharmonic a
boundary contributions.

The Helmholtz free energy for the ion motion isFI
52kT ln ZI . We evaluate this from Eq.~21! for ZI , and add
a term FAB to account for the combined anharmonic a
boundary contribution. It is also convenient to introduce t
liquid characteristic temperatureu0

l , related to the logarith-
mic moment of the frequency distribution,

ln~ku0
l !5

(l ln~\vl!

3N
. ~22!

Then



o
ve

is

uc

th
re

sa

e
r
v
ni

.

le
li
c

c
th
ele
y

er

il-
he
io
ay
la
,
a
m

ere
-

of

for
nic

ed
n-

-

ting

lt-
li-
he
al

n,
on,
e

ring
elt,
l-
of

Sec.

en-

56 4183STATISTICAL MECHANICS OF MONATOMIC LIQUIDS
FI5F0
l 2NkT lnw23NkT ln~T/u0

l !1FAB . ~23!

The next step is to calibratew. As noted in Sec. I, we
previously concluded, from experimental data for entropy
melting at constant density, that the ion system has a uni
sal disordering entropyNkD of liquid relative to crystal,
whereD50.80. Let us find the theoretical expression for th
melting entropy. From Eq.~23!, the ion motional entropy of
the liquid is

SI5Nk lnw13Nk@ ln~T/u0
l !11#1SAB . ~24!

The free energy for the crystal is given by Eq.~23! evaluated
for one structure only, namely, the appropriate crystal str
ture, which we denote with a superscriptc,

FI
c5F0

c23NkT ln~T/u0
c!1FA

c , ~25!

where the anharmonicity is still present, as indicated, but
boundary effect is negligible for the crystal state. The cor
sponding crystal entropy is

SI
c53Nk@ ln~T/u0

c!11#1SA
c . ~26!

Then from Eqs.~24! and ~26!, the ion-motional entropy of
melting at constant density isDSI ,

DSI5Nk lnw13Nk ln~u0
c/u0

l !1SAB2SA
c . ~27!

The only quantity here which might sensibly be a univer
constant isw, so we set

lnw50.80, ~28!

and then investigate the consequences.
This discussion recalls the melting properties mention

in Sec. I. First,SAB and SA
c are usually small at melt. Fo

normal melting elements, where crystal and liquid ha
qualitatively the same electronic structure, the interio
forces should be approximately the same, so thatu0

c/u0
l '1.

Then the last three terms in Eq.~27! are all small, and Eq
~27! readsDSI50.80Nk1 ~small scatter!, which expresses
the nature of the experimental data for normal melting e
ments. For anomalous melting elements, the crystal and
uid have qualitatively different electronic structures, hen
u0

c and u0
l should differ significantly. Then~27! is DSI

50.80Nk1(a large term) depending on the different ele
tronic structures of crystal and liquid, which expresses
nature of the experimental data for anomalous melting
ments. The calibration~28! therefore provides a satisfactor
rationalization of experimental data forDS, and tells us how
many random structures are present in the potential-en
landscape.

Finally, let us consider the remaining part of the Ham
tonian, the termHE which expresses excited states of t
electrons, and the coupling of those states to the ion mot
The corresponding contribution to the partition function m
be evaluated in quantum statistics for the electrons, and c
sical statistics for the ions. The work has not been done
far as the author is aware, and it poses an interesting
useful calculation. In the meantime, we will adopt the sa
model for the liquid as we have used for the crystal@14#,
namely, that the presence ofHE gives rise to an additive
f
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term FE in the free energy, and that at temperatures wh
the ion motion is classical,FE is the bare independent
electron free energy determined by the electron density
states and Fermi statistics~Sommerfeld model!. Hence the
total free energy is

F5FI1FE . ~29!

Empirical evidence shows this to be an excellent model
crystals, including transition metals, where the electro
contribution is quite important@32#.

V. COMPARISON WITH EXPERIMENT
FOR NORMAL MELTING ELEMENTS

Thermodynamic functions for the liquid are calculat
from the free energy derived in Sec. IV. Here we will co
sider the internal energyU, the entropyS, and the constant-
volume specific heatCV , given by

U5F0
l 13NkT1UAB1UE , ~30!

S5Nk lnw13Nk@ ln~T/u0
l !11#1SAB1SE , ~31!

CV53Nk1CAB1CE , ~32!

where F0
l and u0

l are functions ofV. For the nearly free-
electron elements,CE is given by the low-temperature ex
pansion~2!, and in this order we also have

TCE5TSE52UE . ~33!

These equations are not restricted in any way by the mel
process. However, the experimental data atTm , or as a func-
tion of T/Tm , requires special consideration when the me
ing process atTm is anomalous, and to avoid such comp
cations, which after all are irrelevant to the theory of t
liquid state, we restrict attention in this section to the norm
melting elements.

From Eq.~32!, the ionic contributionCI is

CI53Nk1CAB . ~34!

CAB stands for two terms, the anharmonic contributio
which can be of either sign, and the boundary contributi
which is negative since it results from the limiting of th
potential-energy surface, at the intersections of neighbo
valleys. From the experimental data for the liquids at m
Table I, CAB'0.4Nk for the alkali metals, and this was a
ready attributed to anharmonicity in Sec. II. For the rest
the normal melting elements in Table I,CAB'0, except for
Ar, where the large negativeCAB can result from both an-
harmonic and boundary effects. Finally,CAB is presumably
responsible for the general decrease ofCI , with increasing
temperature or with decreasing density, as mentioned in
II.

From the crystal free energy, discussed in Sec. IV,

Uc5F0
c13NkT1UA

c 1UE
c . ~35!

The change in internal energy upon melting at constant d
sity is DU5Ul2Uc, and is written
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TABLE II. Data for the liquid entropy analysis. Columns 2–6 are experimental data for the liquid at melt, whereb is thermal expansion
coefficient andBS is adiabatic bulk modulus. References provide the same experimental data at elevated temperatures.u0

c is evaluated at the
density of the liquid at melt.SE is theoretical electronic entropy at melt.

Element r (g/cm3) b (1024/K) BS ~kbar! S/Nk CP /Nk Refs. u0
c SE /Nk

Na 0.925 2.57 59.4 7.78 3.83 @36, 37, 17# 102.2 0.053
K 0.829 2.9 29.4 9.06 3.87 @38, 37, 17# 61.9 0.080
Rb 1.479 3.0 23.5a 10.26 3.89 @39, 40, 17# 37.7 0.089
Pb 10.68 1.12 358 10.13 3.68 @41, 42, 43, 16# 52.1 0.089
In 7.03 1.11 378 9.11 3.55 @44, 16# 74.4 0.065
Hg 13.69 1.80 299 8.31 3.43 @45, 16# 56.4 0.029

aBS is calculated from experimentalBT for Rb.
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DU5DF01UAB2UA
c 1DUE , ~36!

where the last three terms should be small for normal m
ing. But this quantity can also be evaluated in thermodyna
ics, by equating the liquid and crystal Gibbs free energie
a common pressure and temperature, with the result@13#

DU5TmDS1••• , ~37!

where1••• represents a power series inh, starting ath2,
and where for melting at a constant pressure and temp
ture,

h5
rcm

r lm
21. ~38!

Combining Eqs.~36! and ~37!,

F0
l ~r lm!2F0

c~r lm!5TmDS~r lm!1••• , ~39!

where1••• represents the small terms in Eqs.~36! and~37!.
This tells us that the liquid structure potential lies above t
of the melting crystal by aboutTmDS, a result which can be
checked by theoretical calculation of these two structure
tentials for a normal melting element.

Let us consider the temperature dependence of therm
namic properties of the liquid at elevated temperatures.
thermodynamic functions, all being derived from the fr
energy, contain only one independent function of tempe
ture. We choose to analyze the entropy, and will include o
elements in all three of the following categories.

~a! Nearly free electron elements, so we have a relia
theoretical evaluation ofSE .

~b! Normal melting elements, so we can approximateu0
l

by u0
c .

~c! Elements for which data exist to find entropy at co
stant volume, up to temperatures sufficiently high to reve
meaningful temperature dependence, say up toT/Tm*2.

The sum total of elements satisfying these conditions
six. The need for the volume correction is as follows. W
have accurate values@33# of u0

c at the densityrN , from
inelastic neutron-scattering measurements on crystals at
temperatures. We correct theseu0

c to densityr by means of

u0
c~r!'u0

c~rN!S r

rN
D g

, ~40!
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whereg is the Grüneisen parameter for the crystal, tabulat
in Ref. @13#. Now the liquid at melt is quite expanded from
rN , and values ofu0

c(r lm)/u0
c(rN) are in the range 0.81–

0.90, which is about as far as we can safely apply the
mula ~40!. But the high-temperature liquid continues to e
pand, making it impossible to get reliable estimates ofu0

c at
ever lower densities, so instead we correct the measured
tropy to the fixed densityr lm . If ra is the density at atmo-
spheric pressure, the density correction ofS at each tempera
ture is given by

S~r lm!5S~ra!2zVbBT , ~41!

whereb is the thermal expansion coefficient,BT is the iso-
thermal bulk modulus, and

z5
r lm

ra
21. ~42!

For the six liquids in question, data for the liquid at melt, a
our sources for data at elevated temperatures, are liste
Table II.

In Sec. IV we argued the approximationu0
c'u0

l for nor-
mal melting elements. Let us use this to write the appro
mationStheory,

Stheory5Nk lnw13Nk@ ln~T/u0
c!11#1SE . ~43!

Comparison with Eq.~31! shows the error in this formula is
due to usingu0

c in place ofu0
l , and in neglectingSAB . But

Eq. ~43! has no adjustable parameters. The comparison w
experiment is shown in Fig. 1 for mercury toT53.2Tm , and
is quite striking.

Figure 2 shows the differenceSexpt2Stheory, for all the
high-temperature entropy data we are currently able to a
lyze. Error estimates are as follows. Original values@33# of
u0

c(rN) are accurate to around 1%, and this accuracy mi
be reduced to say 3% for our values ofu0

c(r lm). Smaller
errors, say around60.02 are expected inSE , so the total
error in evaluatingStheory is likely to be around60.1Nk. For
the experimental data collected here, combined error in
measured entropy and the volume correction ranges f
around 0.02Nk at Tm , to around 0.1Nk at 3Tm . Hence the
theoretical-experimental differences shown in Fig. 2 a
hardly beyond the combined expected errors of the analy
Our conclusion, for temperatures to around 3Tm , is that ap-
proximation~43! has an error not much larger than60.2Nk,
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which is 1% or 2% of the total entropy, and is only 25%
the difference 0.8Nk between liquid and crystal entropies
melt.

VI. SUMMARY AND DISCUSSION

Liquid dynamics theory

Two key experimental thermodynamic properties of
emental liquids, together with an analysis of the many-
potential-energy surface, lead us logically to the dynam
theory of monatomic liquids. The steps are as follows.

~a! Experimentally, the ionic specific heat of the liquid
melt is approximately 3Nk for a system ofN ions. This
implies the ionic normal modes of motion are approximat
a set of 3N independent harmonic oscillators, or what
equivalent, the ion motion is mainly confined to nearly h
monic structural valleys in the potential-energy surface.

~b! Structures are either crystalline or amorphous, a
amorphous structures are either symmetric or random.
random character gives two properties of random structu
for large-N systems: they are the vast majority of all stru
tures, hence they dominate the statistical mechanics of
liquid, and the structure potential and normal mode f
quency distribution are essentially the same for all rand
structures.

~c! The Hamiltonian for the motion of ions isHg when
the system is in the valley of any structureg, and is written
in Eqs. ~10! and ~12! as the structure potential, a sum
harmonic normal modes, and an anharmonic correction.
random structures contribute equally to the partition fu
tion. The ion motional free energy in Eq.~23! is the sum of
four terms: the liquid structure potential, the entropy fro
summing over structures, the single-structure harmonic
brational free energy, and the term expressing anharm
and boundary contributions.

~d! Experimentally, the entropy of melting at consta
density contains an ionic disordering contribution ofNkD,

FIG. 1. Theory for the entropy of crystal and liquid mercu
~solid line!, compared with experimental entropy~crosses!, at the
fixed volume of the liquid at melt.
-
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whereD is a universal constant. This suggests the numbe
random structures in the potential energy landscape iswN, so
the entropy of melting contains the termNk lnw, implying
ln w5D. Our estimate of the value ofD is 0.80.

Testable predictions

The theory applies to any monatomic liquid, hence it co
ers both normal and anomalous melting. However, to av
unnecessary complications, we limit our consideration h
to normal melting elements.

~a! Reflecting the experimental properties upon which o
theory is built,CI'3Nk for the liquid at melt, andDS con-
tains the universal contributionNk lnw.

~b! At the same density, liquid and crystal characteris
temperatures are expected to be approximately the sa
u0

l 'u0
c . This can be tested by direct theoretical calculatio

of these quantities.
~c! The liquid structure potentialF0

l is approximately
F0

c1TmDS, a relation which can be tested by direct theor
ical calculations ofF0(g) for crystal and random structures

~d! The liquid theory for entropy, using approximation~b!
and neglecting the anharmonic and boundary contribut
agrees with experimental entropy at elevated temperature
the remarkable accuracy of60.2Nk.

The comparison of theory with experiment for liquid e
tropy atTm is a test of the quasiharmonic approximation f
the solid, plus the universal liquid disordering entropy, wh
the comparison of theory with experiment for liquid entro
at elevated temperatures is a test of the quasiharmonic
proximation for the liquid.

Structures and normal modes

As a technical point, it is possible that genuine structu
do not exist for some or even many of the potential-ene
valleys in configuration space. A structure might be nea
stable, but not exactly so, with some small forces remaini
so that the exact potential surface leads very slightly dow
ward from approximate structure to approximate structu
Nevertheless, in the classical liquid state, the particles h

FIG. 2. Difference between experimental and theoretical
tropy at elevated temperatures, at the fixed volume of the liquid
melt, for six liquid metals.
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kinetic energy at least on the order ofkTm , and the struc-
tures will be dynamically stabilized. Dynamic stabilizatio
can be expressed through a self-consistent potentialF, as for
example in a self-consistent phonon theory@34,35#.

Transits

When the liquid system moves across a boundary, fr
one structural valley to another, we call the motion a ‘‘tra
sit.’’ While the equilibrium statistical mechanics of the liqu
has been constructed without explicit consideration of tr
sits, the transit events have an essential role in achieving
maintaining thermodynamic equilibrium. This situation is
strict analogy to the physics of gases, either classica
quantum, where the equilibrium statistical mechanics
merely the statistics of free-particle states, while scatter
.
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events provide the irreversible driving force to achieve a
maintain equilibrium. An important property of any norm
many-particle system, which means to exclude macrosc
cally correlated states such as superfluid states, is tha
irreversible driving force is local. On this ground, we co
clude that transits are local, that is, when theN-particle sys-
tem moves from the structure at$RK(g)% to the structure at
$RK(g8)%, the equilibrium positionsRK change for only a
small local group of ionsK. We will learn more about tran-
sits as we apply the present liquid theory to irreversible p
cesses.
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